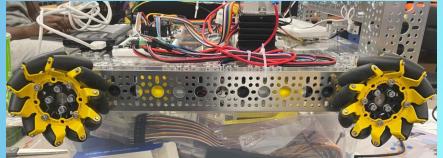
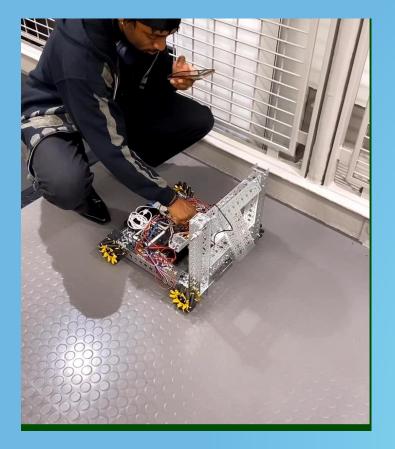
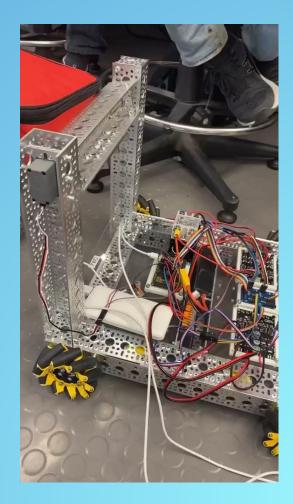
ROBO-RESPONSE


MOBILE ROBOT

Strategy


- Autonomous Navigation
 - Switch to manual control
- Controller:
 - UP arm raised
 - DOWN arm lowered
 - RIGHT turn right
 - LEFT turn left
 - JOYSTICK F, B, L, R


Navigation

- Mecanum Wheels
- Waypoints to:
 - AED location
 - Patient
- Controller

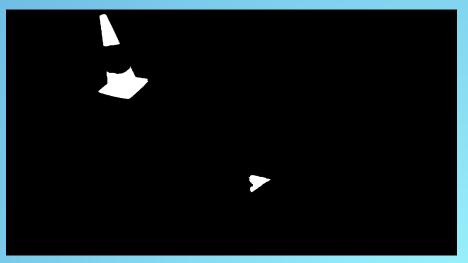
MOBILE ROBOT

MOBILE ROBOT

Autonomous Obstacle Detection

- Time of Flight sensor on servo
 - 90° range of "vision"
- If distance drops below threshold \rightarrow
 - Move laterally
 - Resume navigation to target

Lift Mechanism


- Arm:
 - Tilts upward (pick up) or downward (drop off)
- Use joystick for arm control
- Transport AED at lifted angle

UR5 VISION CONTINUED

Triangle and Red Object Detection

- 1. Start the color and depth frame streaming for the intel D435i RealSense Camera
- Using a range of HSV values

 <(0,255),(134,255),(205-255)> detect red
 objects in the image frame and apply a mask
- 3. From the red objects in the image, detect how many contours there are for each object, object with 3 contours is the triangle.

4. Compute the Center of the Triangle

UR5 VISION CONTINUED Determining Depth and Coordinate Transformation

- Using the depth frame and the center of the triangle determine the distance normal to the camera lens(in meters).
- 2. Using the camera intrinsics and the depth distance to the object, convert the (x,y) pixel coordinates to the (x,y) 3D coordinates.
- 3. Transform coordinates from camera reference frame to ur5 base frame
- 4. Send the coordinates of the Triangle to the ur5 manipulator

UR5 CPR

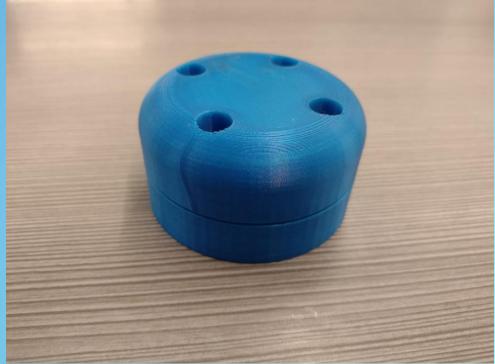
Position Control

- Determine z-position of chest
- Generate points above and below calibrated zposition
- Command arm to move to the points using rtde control commands
- Offset drift by checking actual position after each
 command and shifting pose commands accordingly
- Attempts to integrate force control were
 unsuccessful

BEST PERFORMANCE: 80% success rate, maximum ~90 bpm (one green light)

Force Control

- Determine z-position of chest
- Command pumping motion using forcemode the robot adjusts its position along a given axis in order to achieve the specified force
 - Force feedback built into forcemode function
 - Forces generated at a given frequency using a sine wave
- Generally a lot easier and more reliable than position control (free of drift, no limits on frequency of commands)


BEST PERFORMANCE: 100% success rate, consistently gets two green lights

UR5 END EFFECTOR

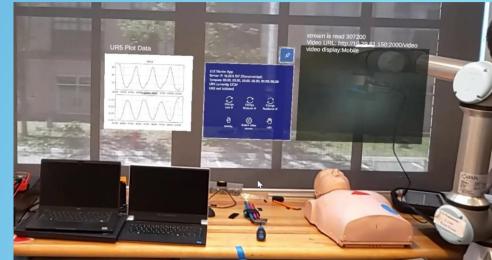
End Effector

- Robust, passive design
- Bolts directly to the adapter plate
- No magnets to damage the force sensors in the UR5
- Rounded to prevent stress points on the patient's skin

GUI for Remote Robot Control

- Streaming real-time robotic arm /force displacement data to Hololens via IP
- Visualize state of robotic arm using this data
- Enable IP change with buttons and keyboard input
- Remote clinician override functionality with intuitive button-based interface

Video Feed for Remote Monitoring


- HTTP video stream to Hololens via Raspberry Pi
- Read streams on hololens with webcam package
- Display video streams on Hololens with mesh render
- Enable video source switching in hololens for multiple inputs/robots

